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Background and Motivation

• Lunar surface geology dominated by 
impact processes 
• Extremely fine particles, with wide 

particle size distribution [Carrier et al., 
1991]

• Physical properties VERY different from 
those of Earth’s soils [Carrier et al., 1991]

• Bedrock ~10-25 km deep and highly 
fractured [Horz et al., 1991] à need to 
work with regolith

• Site-specific variations in physical and 
compositional properties [Carrier et 
al., 1991]

From: Horz et al. [1991]
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Background and Motivation

• Need dedicated tools to characterize the 
physical properties of lunar regolith
• Lack of dedicated instrumentation to quantify 

mechanical, thermal, and dielectric properties 
which are needed for exploration, ISRU, and 
infrastructure development
• Using non-specialized equipment leads to high 

uncertainties in parameter estimates [Sullivan et 
al., 2011; Bickel et al., 2019; Long-Fox et al., In 
Review]
• Can borrow from terrestrial experiences, but 

cannot lose sight of the fundamental differences 
in regolith properties, geology, and environment

From: NASA GSFC

https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1972-031C-09
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Soil Properties Assessment, Resistance,
and Thermal Analysis (SPARTA)
• Low mass, low power planetary regolith 

characterization probe [Anderson et al., 2024]
• Quantifies gradients of mechanical, thermal, 

and electrical properties of any rocky surface
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Soil Properties Assessment, Resistance,
and Thermal Analysis (SPARTA)
• Simultaneous in situ shallow subsurface (≤ 15 cm) measurements at 

unprecedented spatial resolution on any rocky body (Moon, Mars…)
• Deployment mechanism can vary (astronaut, rover/lander)

Credit: Honeybee Robotics
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SPARTA Cone Penetration Tester (CPT)
and Vane Shear Tester (VST)
• SPARTA CPT
• Measures: Force (0-222 N; ± 1.1 N) à Stress 

vs depth (0-15 cm; ± 0.005 cm) 
• Science: geologic history, stratigraphy
• Engineering: bearing capacity, trafficability, 

site evaluation

• SPARTA VST
• Measures: Torque (0-200 Nm; ± 1 Nm) and 

rotation (0-1440°; ± 0.12°) à Shear strength
• Science: geologic history, mapping
• Engineering: trafficability, site evaluation
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Lunar g

Compacted from reentry 
(larger failure signal)
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SPARTA Thermal Conductivity Probe (TCP)
and Dielectric Spectroscopy Probe (DSP)
• SPARTA TCP
• Measures: Temperature (-200-370 °C; ±0.1 °C), thermal conductivity (10-4 to 

0.4 W/m K) and diffusivity, specific heat (if density is known)
• Science: Thermal history, heat flux, composition (including volatiles)
• Engineering: Construction materials (e.g., sintering), resource extractions

• SPARTA DSP
• Measures: Dielectric constant, conductivity (10-15 to 10-10 Ω-1/m), relative 

permittivity (1-5)
• Science: Geologic history, volatile mobility and storage, electromagnetics
• Engineering: Resource prospecting (e.g., water ice)
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SPARTA Testing and Tech. Maturation

• Flight
• Parabolic Flight 

(December 2022, TBD 
2025)
• Suborbital Flight 

(February 2025)
• Field
• JPL Mars Yard (January 

– May 2024)
• Lava Beds National 

Monument (May 2022, 
May 2024)
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Summary

• SPARTA is a unique, high TRL (TRL 6) instrument with heritage from 
both terrestrial instruments and flown lunar science hardware 
(LISTER, TRL 9)
• Measurements cross-validate each other
• SPARTA team has developed and proposed unique mission concepts 

[Sollitt et al., 2024], open to collaboration and inclusion on other 
missions
• Developing astronaut-deployable version, investigating size scaling 

for different missions
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Thank you!
Questions?
jared.long-fox@ucf.edu


